Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Oral oncology ; 2023.
Article in English | EuropePMC | ID: covidwho-2227879

ABSTRACT

Purpose We aim to assess the potential impact of the COVID-19 pandemic on diagnostic delays in HPV-positive oropharyngeal cancer (OPC), and to describe their underlying reasons. Methods All HPV+ OPC referred to a tertiary cancer centre and diagnosed between June-December 2019 (Pre-Pandemic cohort) vs June-December 2020 (Pandemic cohort) were reviewed. TNM classification, gross-tumor-volumes (GTV) and intervals between sign/symptom onset and treatment initiation were compared between the cohorts. Reasons for delay (>6 months from onset of signs/symptoms to a positive biopsy of the primary tumor, or a delay specifically mentioned in the patient chart) in establishing the diagnosis were recorded per clinician's documentation, and categorized as COVID-related or non-COVID-related. Results A total of 157 consecutive HPV+ OPC patients were identified (Pre-Pandemic: 92;Pandemic: 65). Compared to the Pre-Pandemic cohort, Pandemic cohort patients had a higher proportion of N2-N3 (32% vs 15%, p=0.019) and stage III (38% vs 23%, p=0.034) disease at presentation. The differences in proportions with >6 months delay from symptom onset to establishing the diagnosis (29% vs 20%, p=0.16) or to first treatment (49% vs 38%, p=0.22) were not statistically different. 47% of diagnostic delays in the Pandemic cohort were potentially attributable to COVID-19. Conclusion We observed a collateral impact of the COVID-19 pandemic on HPV+ OPC care through more advanced stage at presentation and a non-significant but numerically longer interval to diagnosis. This could adversely impact patient outcomes and future resource allocation. Both COVID-19-related or unrelated factors contribute to diagnostic delay. Tailored interventions to reduce delays are warranted.

2.
Oral Oncol ; 138: 106332, 2023 03.
Article in English | MEDLINE | ID: covidwho-2221211

ABSTRACT

PURPOSE: We aim to assess the potential impact of the COVID-19 pandemic on diagnostic delays in HPV-positive oropharyngeal cancer (OPC), and to describe their underlying reasons. METHODS: All HPV + OPC referred to a tertiary cancer centre and diagnosed between June-December 2019 (Pre-Pandemic cohort) vs June-December 2020 (Pandemic cohort) were reviewed. TNM classification, gross-tumor-volumes (GTV) and intervals between sign/symptom onset and treatment initiation were compared between the cohorts. Reasons for delay (>6 months from onset of signs/symptoms to a positive biopsy of the primary tumor, or a delay specifically mentioned in the patient chart) in establishing the diagnosis were recorded per clinician's documentation, and categorized as COVID-related or non-COVID-related. RESULTS: A total of 157 consecutive HPV + OPC patients were identified (Pre-Pandemic: 92; Pandemic: 65). Compared to the Pre-Pandemic cohort, Pandemic cohort patients had a higher proportion of N2-N3 (32 % vs 15 %, p = 0.019) and stage III (38 % vs 23 %, p = 0.034) disease at presentation. The differences in proportions with > 6 months delay from symptom onset to establishing the diagnosis (29 % vs 20 %, p = 0.16) or to first treatment (49 % vs 38 %, p = 0.22) were not statistically different. 47 % of diagnostic delays in the Pandemic cohort were potentially attributable to COVID-19. CONCLUSION: We observed a collateral impact of the COVID-19 pandemic on HPV + OPC care through more advanced stage at presentation and a non-significant but numerically longer interval to diagnosis. This could adversely impact patient outcomes and future resource allocation. Both COVID-19-related and unrelated factors contribute to diagnostic delays. Tailored interventions to reduce delays are warranted.


Subject(s)
COVID-19 , Oropharyngeal Neoplasms , Papillomavirus Infections , Humans , Pandemics , Retrospective Studies , COVID-19 Testing
3.
Cancers (Basel) ; 14(8)2022 Apr 11.
Article in English | MEDLINE | ID: covidwho-1855517

ABSTRACT

(1) Background: NPC patients with de novo distant metastasis appears to be a heterogeneous group who demonstrate a wide range of survival, as suggested by growing evidence. Nevertheless, the current 8th edition of TNM staging (TNM-8) grouping all these patients into the M1 category is not able to identify their survival differences. We sought to identify any anatomic and non-anatomic subgroups in this study. (2) Methods: Sixty-nine patients with treatment-naive de novo M1 NPC (training cohort) were prospectively recruited from 2007 to 2018. We performed univariable and multivariable analyses (UVA and MVA) to explore anatomic distant metastasis factors, which were significantly prognostic of overall survival (OS). Recursive partitioning analysis (RPA) with the incorporation of significant factors from MVA was then performed to derive a new set of RPA stage groups with OS segregation (Set 1 Anatomic-RPA stage groups); another run of MVA was performed with the addition of pre-treatment plasma EBV DNA. A second-round RPA with significant prognostic factors of OS identified in this round of MVA was performed again to derive another set of stage groups (Set 2 Prognostic-RPA stage groups). Both sets were then validated externally with an independent validation cohort of 67 patients with distant relapses of their initially non-metastatic NPC (rM1) after radical treatment. The performance of models in survival segregation was evaluated by the Akaike information criterion (AIC) and concordance index (C-index) under 1000 bootstrapping samples for the validation cohort; (3) Results: The 3-year OS and median follow-up in the training cohort were 36.0% and 17.8 months, respectively. Co-existence of liver-bone metastases was the only significant prognostic factor of OS in the first round UVA and MVA. Set 1 RPA based on anatomic factors that subdivide the M1 category into two groups: M1a (absence of co-existing liver-bone metastases; median OS 28.1 months) and M1b (co-existing liver-bone metastases; median OS 19.2 months, p = 0.023). When pre-treatment plasma EBV DNA was also added, it became the only significant prognostic factor in UVA (p = 0.001) and MVA (p = 0.015), while co-existing liver-bone metastases was only significant in UVA. Set 2 RPA with the incorporation of pre-treatment plasma EBV DNA yielded good segregation (M1a: EBV DNA ≤ 2500 copies/mL and M1b: EBV DNA > 2500 copies/mL; median OS 44.2 and 19.7 months, respectively, p < 0.001). Set 2 Prognostic-RPA groups (AIC: 228.1 [95% CI: 194.8-251.8] is superior to Set 1 Anatomic-RPA groups (AIC: 278.5 [254.6-301.2]) in the OS prediction (p < 0.001). Set 2 RPA groups (C-index 0.59 [95% CI: 0.54-0.67]) also performed better prediction agreement in the validation cohort (vs. Set 1: C-index 0.47 [95% CI: 0.41-0.53]) (p < 0.001); (4) Conclusions: Our Anatomic-RPA stage groups yielded good segregation for de novo M1 NPC, and prognostication was further improved by incorporating plasma EBV DNA. These new RPA stage groups for M1 NPC can be applied to countries/regions regardless of whether reliable and sensitive plasma EBV DNA assays are available or not.

4.
Radiother Oncol ; 154: 70-75, 2021 01.
Article in English | MEDLINE | ID: covidwho-733649

ABSTRACT

PURPOSE: To determine the outcomes of oral cavity squamous cell cancer (OSCC) patients treated with non-surgical approach i.e. definitive intensity-modulated radiation therapy (IMRT). METHODS: All OSCC patients treated radically with IMRT (without primary surgery) between 2005-2014 were reviewed in a prospectively collected database. OSCC patients treated with definitive RT received concurrent chemotherapy except for early stage patients or those who declined or were unfit for chemotherapy. The 5-year local, and regional, distant control rates, disease-free, overall, and cancer-specific survival, and late toxicity were analyzed. RESULTS: Among 1316 OSCC patients treated with curative-intent; 108 patients (8%) received non-operative management due to: medical inoperability (n = 14, 13%), surgical unresectability (n = 8, 7%), patient declined surgery (n = 15, 14%), attempted preservation of oral structure/function in view of required extensive surgery (n = 53, 49%) or extensive oropharyngeal involvement (n = 18, 17%). Sixty-eight (63%) were cT3-4, 38 (35%) were cN2-3, and 38 (35%) received concurrent chemotherapy. With a median follow-up of 52 months, the 5-year local, regional, distant control rate, disease-free, overall, and cancer-specific survival were 78%, 92%, 90%, 42%, 50%, and 76% respectively. Patients with cN2-3 had higher rate of 5-year distant metastasis (24% vs 3%, p = 0.001), with detrimental impact on DFS (p = 0.03) and OS (p < 0.02) on multivariable analysis. Grade ≥ 3 late toxicity was reported in 9% of patients (most common: grade 3 osteoradionecrosis in 6%). CONCLUSIONS: Non-operative management of OSCC resulted in a meaningful rate of locoregional control, and could be an alternative curative approach when primary surgery would be declined, unsuitable or unacceptably delayed.


Subject(s)
Head and Neck Neoplasms , Mouth Neoplasms , Radiotherapy, Intensity-Modulated , Combined Modality Therapy , Humans , Mouth Neoplasms/therapy , Radiotherapy, Intensity-Modulated/adverse effects , Retrospective Studies
5.
Cancer ; 126(15): 3426-3437, 2020 08 01.
Article in English | MEDLINE | ID: covidwho-457377

ABSTRACT

BACKGROUND: The objective of this study was to identify a subgroup of patients with head and neck squamous cell carcinoma (HNSCC) who might be suitable for hypofractionated radiotherapy (RT-hypo) during the COVID-19 pandemic. METHODS: HNSCC cases (oropharynx/larynx/hypopharynx) treated with definitive RT-hypo (60 Gy in 25 fractions over 5 weeks), moderately accelerated radiotherapy (RT-acc) alone (70 Gy in 35 fractions over 6 weeks), or concurrent chemoradiotherapy (CCRT) during 2005-2017 were included. Locoregional control (LRC) and distant control (DC) after RT-hypo, RT-acc, and CCRT were compared for various subgroups. RESULTS: The study identified 994 human papillomavirus-positive (HPV+) oropharyngeal squamous cell carcinoma cases (with 61, 254, and 679 receiving RT-hypo, RT-acc, and CCRT, respectively) and 1045 HPV- HNSCC cases (with 263, 451, and 331 receiving RT-hypo, RT-acc, and CCRT, respectively). The CCRT cohort had higher T/N categories, whereas the radiotherapy-alone patients were older. The median follow-up was 4.6 years. RT-hypo, RT-acc, and CCRT produced comparable 3-year LRC and DC for HPV+ T1-2N0-N2a disease (seventh edition of the TNM system [TNM-7]; LRC, 94%, 100%, and 94%; P = .769; DC, 94%, 100%, and 94%; P = .272), T1-T2N2b disease (LRC, 90%, 94%, and 97%; P = .445; DC, 100%, 96%, and 95%; P = .697), and T1-2N2c/T3N0-N2c disease (LRC, 89%, 93%, and 95%; P = .494; DC, 89%, 90%, and 87%; P = .838). Although LRC was also similar for T4/N3 disease (78%, 84%, and 88%; P = .677), DC was significantly lower with RT-hypo or RT-acc versus CCRT (67%, 65%, and 87%; P = .005). For HPV- HNSCC, 3-year LRC and DC were similar with RT-hypo, RT-acc, and CCRT in stages I and II (LRC, 85%, 89%, and 100%; P = .320; DC, 99%, 98%, and 100%; P = .446); however, RT-hypo and RT-acc had significantly lower LRC in stage III (76%, 69%, and 91%; P = .006), whereas DC rates were similar (92%, 85%, and 90%; P = .410). Lower LRC in stage III predominated in patients with laryngeal squamous cell carcinoma receiving RT-acc (62%) but not RT-hypo (80%) or CCRT (92%; RT-hypo vs CCRT: P = .270; RT-acc vs CCRT: P = .004). CCRT had numerically higher LRC in comparison with RT-hypo or RT-acc in stage IV (73%, 65%, and 66%; P = .336). CONCLUSIONS: It is proposed that RT-hypo be considered in place of CCRT for HPV+ T1-T3N0-N2c (TNM-7) HNSCCs, HPV- T1-T2N0 HNSCCs, and select stage III HNSCCs during the COVID-19 outbreak.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Radiation Dose Hypofractionation , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Adult , Aged , Aged, 80 and over , COVID-19 , Coronavirus Infections/epidemiology , Female , Follow-Up Studies , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/mortality , Head and Neck Neoplasms/virology , Humans , Male , Middle Aged , Neoplasm Recurrence, Local , Oropharyngeal Neoplasms/drug therapy , Oropharyngeal Neoplasms/radiotherapy , Oropharyngeal Neoplasms/virology , Pandemics , Papillomavirus Infections/complications , Pneumonia, Viral/epidemiology , Radiotherapy, Intensity-Modulated , Risk Factors , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/virology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL